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ABSTRACT

We develop the theory of higher prolongations of algebraic varieties over

fields in arbitrary characteristic with commuting Hasse–Schmidt deriva-

tions. Prolongations were introduced by Buium in the context of fields of

characteristic 0 with a single derivation. Inspired by work of Vojta, we

give a new construction of higher prolongations in a more general context.

Generalizing a result of Buium in characteristic 0, we prove that these

prolongations are represented by a certain functor, which shows that they

can be viewed as ‘twisted jet spaces.’ We give a new proof of a theorem

of Moosa, Pillay and Scanlon that the prolongation functor and jet space

functor commute. We also prove that the m-th prolongation and m-th

jet space of a variety are differentially isomorphic by showing that their

infinite prolongations are isomorphic as schemes.

Introduction

Prolongations of algebraic varieties over a differential field of characteristic 0

were introduced by Buium [Bui92], and have also been considered in more

general contexts [BV95, BV96, Sca97, MPS07]. The purpose of this paper is to

develop the basic theory of prolongations of algebraic varieties over fields with

finitely many commuting Hasse–Schmidt (or ‘higher’) derivations. Let us begin

by describing the idea behind Buium’s construction and the connection to jet

spaces of varieties. We then describe the content of the paper in more detail.
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Let (K, δ) be a differential field and let R = K{x1, . . . , xm} be the ring of

differential polynomials, which is the polynomial ring in the infinitely many

variables δnxi, 0 ≤ n and i ≤ m. We say that f ∈ R has order ≤ n if for every

variable δjxi that occurs in f , one has j ≤ n. Observe that the set of elements

of order ≤ n is a subring of R. Elements of R can be viewed as functions on

affine m-space Am = Km in a natural way.

More generally, let X ⊆ Am be an affine variety over (K, δ) and let A be

the ring of regular functions on X . As above, there is a natural way to define

the ring of differential polynomial functions of order ≤ n on X , called the n-th

prolongation of A, which in this introduction we will denote A(n). Likewise, the

n-th prolongation ofX is Pn(X) = Spec A(n). Thus, there is a bijection between

differential polynomial functions on X of order ≤ n and regular functions on

Pn(X). For each n, there is a natural ‘projection function’ πn : Pn(X) → X ,

as well as a differential polynomial map ∇n : X → Pn(X), which is a section

of πn. In local coordinates, given a ∈ X , ∇n(a) = (a, δ(a), . . . , δn(a)). Any

differential polynomial function of order ≤ n on X factors as the composition

of ∇n with a regular function on Pn(X).

One can also define the infinite prolongation A(∞) of A as the ring of all

differential polynomial functions on X , and the infinite prolongation P∞(X)

as Spec A(∞). In this case, A(∞) is naturally a differential ring, so that X(∞)

will be what Buium calls a D-scheme, that is, a scheme over a differential field,

equipped with a sheaf of differential rings. Note also that P∞(X) is a pro-

algebraic variety P∞(X) = lim←−Pm(X). As usual, everything above globalizes

to arbitrary varieties.

In an appendix to [Bui93], Buium notes that prolongations are closely related

to jet (or arc) spaces of varieties, which have been studied extensively in recent

years (for example, [DL99, Cra04]). Recall that the K-valued points of the n-th

jet space of a variety are the K[z]/zn+1-valued points of the variety itself. Al-

ternatively, the n-th jet space represents a certain functor, implicit in the above

characterization. What Buium observed was that his prolongations represent

a twisted version of this functor. Further, given a variety that descends to the

field of constants, its n-th prolongation is isomorphic to its n-th jet space. The

connection between jets and prolongations does not play a significant role in

Buium’s theory, but it is central to the present work.

Below, we develop the theory of prolongations in a rather different way than

Buium, who built on earlier work of Johnson [Joh85]. Our approach was inspired
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by Votja [Voj06], who gives an elegant construction of jet spaces using higher

derivations. The starting point for this paper was the observation that, over

a differential field, one can modify Vojta’s idea so as to define prolongations

in a similar manner. This perhaps further clarifies the relation between jets

and prolongations. It also leads to a rather direct proof that prolongations rep-

resent the twisted jet functor introduced by Buium. We should also mention

Gillet’s paper [Gil02], where he develops the theory of prolongations using ad-

joint functors, which allows him to give new proofs of earlier results of Buium

and Kolchin.

Our work was also motivated by a recent paper of Moosa, Pillay, and Scan-

lon [MPS07] on the model theory of differentially closed fields in characteristic

0 with finitely many commuting derivations. In that paper, the prolongation

of an algebraic variety is actually defined in terms of the twisted jet functor.

The authors then go on to define more generally prolongations of differential

algebraic varieties, which are not treated here. We hope that our paper could be

read helpfully as a companion to theirs. Good references for the model theory of

differential fields include [Mar06, Pil02, Sca02]. For applications to diophantine

geometry, see, for example, [HP00, PZ03, Pil04].

Let us also say something about higher derivations. These are defined below,

but the basic idea is that a ring can be equipped with a sequence of additive

maps, (D0, D1, . . . , Dm, . . .), with D1 a derivation and each Dm, m > 1, an ana-

log of the m-th power of this derivation. In characteristic 0, they are essentially

equivalent to ordinary derivations, but in positive characteristic, higher deriva-

tions are more general and rather natural to use, for example, for developing

differential Galois theory [MvdP03]. From a technical point of view, also, it

was more straightforward to adapt Vojta’s construction to fields equipped with

higher derivations.

Summary of results. In Section 1, we begin by recalling the definition of a

higher derivation (of order m) from an R-algebra A to an R-algebra B. We

then introduce the notion of a higher derivation over a differential ring (R,D),

and show that there is a universal object HSmA/(R,D), which is analogous to

the module of Kähler differentials ΩA/R in the usual case. This is the m-th

prolongation of A, and we establish some basic properties of it. (In the first

three sections, we restrict our attention to fields with a single higher derivation.
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In Section 4, we briefly explain how to generalize our results to fields with

commuting derivations.)

In Section 2, we define the m-th prolongation of a variety, which is by this

point straightforward. We then prove a characterization of prolongations in

terms of representable functors, a result due to Buium in characteristic 0. We

also give a new proof of Moosa, Pillay, and Scanlon’s theorem that the jet space

functors and prolongation space functors commute.

In Section 3, we develop the foundations of Buium’s theory of D-schemes

in arbitrary characteristic. Here we also prove the main result of this paper,

that the m-th prolongation of a variety is isomorphic to its m-th jet space.

Previously, this had only been known for m = 1, where the 1-st jet space is just

the tangent variety.

Finally, in the last section of the paper, we develop the theory of prolongations

over fields with commuting derivations, generalizing the methods in the earlier

sections of the paper.

Conventions. Let N = {0, 1, 2, . . .} denote the set of natural numbers, and

N+ = N\{0}. Throughout the paper, the variablem will range over the ordered

set N ∪ {∞}, with n < ∞, for all n ∈ N. Variables i, j, k, l will range over N.

We frequently write, for example, i ≤ m, as shorthand for i ≤ m, if m ∈ N, and

i < m, if m =∞. Likewise, i = 0, . . . ,m should be taken to mean exactly that,

if m ∈ N, and to mean i = 0, 1, . . ., if m = ∞. We hope that such shorthand

will not lead to any unclarity in the presentation.

All rings are commutative with unit.

1. Higher derivations

Definition 1.1 (See [Mat89] or [Voj06]): Let R be a ring, f : R→ A and R→ B

be R-algebras, and m ∈ N ∪ {∞}. A higher derivation of order m from

A to B over R is a sequence D = (D0, . . . , Dm), or (D0, D1, . . .) if m = ∞,

where D0 : A → B is an R-algebra homomorphism and D1, . . . , Dm : A → B

are homomorphisms of (additive) abelian groups such that

(1) Di(f(r)) = 0 for all r ∈ R and i ≥ 1;

(2) (Leibniz Rule) for all a, b ∈ A and k ≤ m,

Dk(ab) =
∑

i+j=k

Di(a)Dj(b).
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Let DermR (A,B) denote the set of such derivations.

Higher derivations are also called Hasse–Schmidt derivations.

Instead of condition (1), Matsumura requires the Di to be R-module homo-

morphisms, which is equivalent. Below, we will write (D0, . . . , Dm), etc. even

when m =∞.

Example 1.2: With R,A,B, and m as above, if Q ⊆ B ⊆ A and D is a usual

derivation from A to B over R, then Di = 1
i!D

i, i ≤ m, is a higher derivation.

This is a relative notion of higher derivation. Viewing rings A and B as Z-

algebras, one also gets an absolute notion. Write Derm(A,B) for DermZ (A,B).

Remark 1.3: Let R,A,B, and m be as above, and D = (D0, . . . , Dm) be a

sequence of maps from A to B. There is an equivalent condition for D to be a

higher derivation that will be useful below.

For m < ∞, let Bm = B[t]/(tm+1), the truncated polynomial ring, and for

m =∞, let Bm = B[[t]], the ring of power series. It is easy to check that D is

a higher derivation if and only if the map g : A→ Bm,

a 7→ D0(a) +D1(a)t+ · · ·+Dm(a)tm

is a homomorphism of R-algebras. In the special case R = C, A = C(z),

B = C, and Di = 1
i!d

i/dz, this says that the map taking a function f(z) ∈ A to

its (truncated) Taylor series expansion around 0 is a C-algebra homomorphism.

Observe that DermR (A,−) is a covariant functor from (R-algebras) to (Sets),

and is represented by a (graded) R-algebra that Vojta calls HSmA/R, which is

also an A-algebra. (See also Remark 1.10.(1) below.) For m = 1, HSmA/R is just

the symmetric algebra on ΩA/R.

Definition 1.4: Let A be an R-algebra. A higher derivation on A is a sequence

of maps D ∈ Der∞R (A,A) such that D0 = IdA. In this case, we call (A,D) a

D-ring over R. A homomorphism f : (A,D) → (B,D) between D-rings

over R is an R-algebra homomorphism such that f(Di(a)) = Di(f(a)), for all

a ∈ A and all i. We will often be interested in the case when A is just a ring

(that is, a Z-algebra) and call (A,D) simply a D-ring. The set of constants of

(A,D) are those a ∈ A such that Dia = 0, for all i ≥ 1. Given (A,D), say that

D is iterative if for all i, j, Di ◦Dj =
(
i+j
j

)
Di+j .



244 ERIC ROSEN Isr. J. Math.

Below we will only consider iterative D-rings. Note that it does not make

sense to talk of a higher derivation from one ring to another being iterative.

Remark 1.5: As above, let Am = A[t]/(tm+1), for m < ∞, and A∞ = A[[t]].

Let h : Am → A be the homomorphism sending f(t) ∈ Am to f(0) ∈ A. Then a

sequence of maps D = (D0, . . . , Dm) from A to A is a higher derivation if and

only if the map d : A → Am, with d(a) =
∑

i≤mDi(a)t
i, is a homomorphism

and h ◦ d = IdA.

Derivations on a ring extend uniquely to localizations (see [Mat89], Theorem

27.2, or [Oku87], Section 1.6, Theorem 1).

Lemma 1.6 (Quotient Rule): Let (A,D) be a D-ring. For all invertible b ∈ A,

and n ∈ N+,

Dn

(
1

b

)
=
−1

b

( ∑

i<n

Di(b) ·Dn−i

(1

b

))
.

To obtain this, observe 0 = Dn(1) = Dn(b ·
1
b ) =

∑
i≤nDi(b) · Dn−i(

1
b )), and

solve for Dn(
1
b ).

Lemma 1.7: Let (R,D) be a D-ring, and S a multiplicative subset of R. Then

there is a unique extension of D to S−1R.

We now introduce higher derivations on R-algebras when (R,D) is also a

D-ring. This is closely related to Buium’s prolongations, where (R, δ) is a

differential ring, A is an R-algebra, and one considers derivations on A that are

‘compatible’ with δ.

Definition 1.8: Let (R,D) be a D-ring. An R-algebra A, given by f : R → A,

is an (R,D)-algebra if for all r ∈ R and all i, f(r) = 0 implies f(Di(r))=0; in

other words, Ker(f) is a D-ideal.

Let f : R → A and B be (R,D)-algebras. A higher derivation from A to

B of order m over (R,D) is a sequence δ = (δ0, . . . , δm) such that δ0 : A → B

is an R-algebra homomorphism, δi : A → B, 1 ≤ i ≤ m, are (additive) abelian

group homomorphisms, and

(1) δi(f(r)) = δ0(f(Di(r))), for r ∈ R;

(2) (Leibniz Rule) δk(ab) =
∑
i+j=k δi(a)δj(b), for a, b ∈ A.

Let Derm(R,D)(A,B) denote the set of such derivations.
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Note that if (R,D) is trivial, that is, D0 = IdR and Di = 0, i ≥ 1, then this

reduces to Definition 1.1.

As above, given an (R,D)-algebra A, Derm(R,D)(A,−) is a covariant functor

from ((R,D)-algebras) to (Sets), which we will now observe to be representable.

Definition 1.9: Let (R,D) be a D-ring, f : R → A an (R,D)-algebra. For all

m, define HSmA/(R,D) to be the A-algebra that is the quotient of the polynomial

algebra A[x(i)]x∈A,1≤i≤m by the ideal I generated by:

(1) (x+ y)(i) − x(i) − y(i) : x, y ∈ A, i = 1, . . . ,m;

(2) (xy)(k) −
∑

i+j=k x
(i)y(j) : x, y ∈ A, k = 1, . . . ,m;

(3) f(r)(i) − f(Di(r)) : r ∈ R, i = 1, . . . ,m.

In A[x(i)], we identify x ∈ A with x(0). There is a universal derivation d =

(d0, . . . , dm) : A→ HSmA/(R,D) such that for i ≤ m and x ∈ A, di(x) = x(i).

Remarks 1.10: (1) With the above notation, if (R,D) is a trivial D-ring,

then HSmA/(R,D) is the same as Vojta’s HSmA/R. In general, though,

HSmA/(R,D) is not naturally graded, because of condition (3).

(2) For m = 1, we get the first prolongation in the sense of Buium.

(3) For 0 ≤ m < n ≤ ∞, there are natural A-algebra homomorphisms

fmn : HSmA/(R,D) → HSnA/(R,D). These form a directed system, and

HS∞
A/(R,D) = lim

−→

i∈N

HSiA/(R,D).

Definition 1.11: Let (R,D) be a D-ring. A D-(R,D)-algebra is a D-ring (A,D)

that is also an (R,D)-algebra via some map f : R→ A, such that the derivation

on A is compatible with that on R. That is, for all r ∈ R and all i, Di(f(r)) =

f(Di(r)).

Lemma 1.12: Given an (R,D)-algebra A, there is a canonical way to make

HS∞
A/(R,D) into a D-(R,D)-algebra.

Proof. Extend the universal derivation d : A → HS∞
A/(R,D) to an (iterative)

higher derivation on HS∞
A/(R,D) by setting

di

(
x(j)

)
=

(
i+j
i

)
x(i+j).
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Definition 1.13: Let (R,D) be a D-ring. Let

Rm =




R[t]/(tm+1) for m <∞

R[[t]] for m =∞

For each m, we define a ‘twisted’ homomorphism e : R → Rm by e(r) =

D0(r) +D1(r)t + · · ·+Dm(r)tm. Let R̃m be the R-algebra isomorphic to Rm

as a ring, and made into an R-algebra via the map e : R→ Rm.

Let f : R→ B be an (R,D)-algebra. Define Bm = B[t]/(tm+1), for m <∞,

and B∞ = B[[t]]. Let B̃m be the ring Bm made into an R-algebra via the map

f̃ : R→ B̃m that sends

r 7→ f(D0(r)) + f(D1(r))t + · · ·+ f(Dm(r))tm.

Proposition 1.14: Let (R,D) be a D-ring. For all m, Rm and R̃m are iso-

morphic as R-algebras.

Proof. Suppose first that m <∞. We claim that the map ψ : Rm → R̃m with

ψ(r) = e(r) = D0(r) + D1(r)t + · · · + Dm(r)tm, for r ∈ R, and ψ(t) = t is

an isomorphism of R-algebras. Clearly, ψ is a homomorphism, so it suffices to

check that it is injective and surjective.

Let a = a0 + a1t + · · · + amt
m, so ψ(a) = e(a0) + e(a1)t + · · · + e(am)tm.

Rearranging terms, one gets

ψ(a) = a0+(D1(a0)+a1)t+(D2(a0)+D1(a1)+a2)t
2+· · ·+(Dm(a0)+. . .+am)tm.

Suppose that ψ(a) = 0, so in particular each coefficient of ψ(a) as a polynomial

in t is 0. Thus, a0 = 0. Looking at the next term, 0 = D1(a0) + a1 = a1.

Continuing this way, one sees that all of the ai’s are 0, so a itself is 0 and ψ is

injective.

To show that ψ is surjective, it suffices to show that for each r ∈ R, r =

r + 0t + · · · + 0tm ∈ R̃m is in Im(ψ). (Of course, r 6= ψ(r).) For fixed r, we

iteratively define a sequence, c0, c1, . . . , cm, of elements of Rm with the following

properties. One, for all i ≤ m, the constant term of ψ(ci), as a polynomial in

t, is r. Two, for i ≥ 1, and 1 ≤ j ≤ i, the coefficient of tj in ψ(ci) is 0.

Then ψ(cm) = r, as desired. Set c0 = r. For the iterative step, suppose that

c0, . . . , ci have been defined, and that ψ(ci) = r + ai+1t
i+1 + · · · + amt

m. Let

ci+1 = ci − ai+1t
i+1. Clearly, this procedure yields such a sequence.
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For m =∞, given the isomorphisms ψi : Ri → R̃i, i <∞, it suffices to note

that R∞ and R̃∞ are the inverse limits of {Ri}i<∞ and {R̃i}i<∞, respectively.

The required isomorphism ψ∞ : R∞ → R̃∞ is again given by sending r ∈ R to

e(r), and sending t to t.

More generally, we have the following.

Proposition 1.15: Let (R,D) be a D-ring, and B an (R,D)-algebra such that

D extends to a derivation on B. Then B̃m ∼= Bm, as R-algebras.

Proof. Choose a derivation D on B extending (R,D), and then argue as

above.

For fields of characteristic 0, any (higher) derivation on a field K can be

extended to a derivation on any extension field L ⊇ K, so one has the following

corollary.

Corollary 1.16: Let (K,D) be a D-field of characteristic 0 and L ⊇ K an

extension field. Then L̃m ∼= Lm, as K-algebras.

On the other hand, Lm and L̃m are not always isomorphic.

Proposition 1.17: Let (K,D) be a D-field of characteristic p > 0, and let L be

a purely inseparable algebraic extension ofK, such that there is an a ∈ L, b ∈ K,

with ap = b andD1(b) 6= 0. Then for eachm ≥ 1, Lm and L̃m are not isomorphic

as K-algebras.

Proof. We show that there is no K-algebra homomorphism from L to L̃m,

which immediately implies the proposition. In particular, we argue that any

such homomorphism would give an extension of D1 to a derivation on L, which

is impossible (as 0 6= D1(b) = D1(a
p) = pap−1D1(a) = 0, contradiction).

Suppose that φ : L → L̃m is a K-algebra homomorphism. For all c ∈ K,

φ(c) = D0(c) + D1(c)t + · · · + Dm(c)tm. For x ∈ L, write φ(x) =

φ0(x)+φ1(x)t+· · ·+φm(x)tm, with φi : L→ L, for i = 0, . . . ,m. We claim that

for all x ∈ L, φ0(x) = x. Indeed, this is clear for x ∈ K, as φ0(x) = D0(x) = x.

Otherwise, xp
n

= y, for some n and some y ∈ K. Then

φ(x)p
n

= (φ0(x) + φ1(x)t+ · · ·+ φm(x)tm)
pn

= φ0(x)
pn

+ t · g(t)

and also

φ(x)p
n

= φ
(
xp

n)
= φ(y) = D0(y) + t · h(t)
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with g(t), h(t) polynomials in L[t]. Thus φ0(x)
pn

= D0(y) = y, so φ0(x) = x,

as desired.

By the claim, (L, φ) is a higher derivation of order m that extends (K,D).

In particular, φ1 is an extension of D1 to L, which is impossible.

Proposition 1.18: Let (R,D) be a D-ring, R → A and R → B be (R,D)-

algebras. Given a higher derivation δ = (δ0, . . . , δm) : A → B there ex-

ists a unique (R,D)-algebra homomorphism, φ : HSmA/(R,D) → B such that

(δ0, . . . , δm) = (φ◦d0, . . . , φ◦dm). Thus HSmA/(R,D) (together with the universal

derivation d : A→ HSmA/(R,D)) represents the functor Derm(R,D)(A,−).

Proof. Define φ0 : A[x(i)]x∈A,i=1,...,m → B by x(i) 7→ δi(x). By the construction

of the ideal I ⊆ A[x(i)] and properties of derivation, we get that Ker(φ0) ⊇ I,

so there is an induced map φ : HSmA/(R,D) → R. As δ = φ ◦ d, φ is unique. Thus

the map

HomR(HSmA/(R,D), B) −→ Derm(R,D)(A,B)

is bijective.

Compare the following proposition to Remark 1.3.

Proposition 1.19: Let (R,D) be a D-ring, f : R → A, g : R → B be (R,D)-

algebras. Given a derivation δ = (δ0, . . . , δm) ∈ Derm(R,D)(A,B), define a map

φ = φδ : A → B̃m by φ(a) = δ0(a) + δ1(a)t + · · · + δm(x)tm. Then φδ ∈

HomR(A, B̃m) and the map

δ 7→ φδ : Derm(R,D)(A,B)→ HomR(A, B̃m)

is a bijection.

Proof. The δi are homomorphism of the additive groups, so φ is also. The

Leibniz Rule implies that φ is multiplicative, so it only remains to show that

φ ◦ f = g̃, where g̃ : R → B̃m is the homomorphism that makes B̃m into an

R-algebra. Check,

φ ◦ f(x) = δ0(f(x)) + δ1(f(x))t + · · ·+ δm(f(x))tm

= δ0(f(x)) + δ0(f(D1(x)))t + . . .+ δ0(f(Dm(x)))tm

= g(x) + g(D1(x))t + . . .+ g(Dm(x))tm = g̃(x)

This establishes injectivity. To show surjectivity, we just reverse the direction

of the argument. Suppose that h : A → B̃m is an R-algebra homomorphism,
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which we can write as h(a) = h0(a) + h1(a)t + · · · + hm(a)tm, each hi a map

from A to B. We claim that {hi : i ≤ m} is a higher derivation from A to B.

Clearly the hi are additive and satisfy the Leibniz Rule. So it suffices to show

that for r ∈ R and i ≤ m, hi(f(r)) = h0(f(Di(r))). Since h is an R-algebra

homomorphism, one has hi(f(r)) = h0(f(Di(r)) = g(Di(r)).

The next corollary follows immediately from Proposition 1.18 and Proposi-

tion 1.19. It is the main point in the characterization of prolongations in terms

of representable functors.

Corollary 1.20 (Buium): There is a natural bijection

HomR(HSmA/(R,D), B) −→ HomR(A, B̃m)

The next result is due to Buium [Bui93] and Gillet [Gil02] in a slightly dif-

ferent context. In fact, Gillet defines the prolongation functor to be the left

adjoint of the forgetful functor from differential algebras to algebras.

Proposition 1.21: Let (R,D) be a D-ring, AlgR be the category of (R,D)-

algebras, and D-AlgR be the category of D-(R,D)-algebras. Let U be the

forgetful functor D-AlgR → AlgR. Then the functor F : AlgR → D-AlgR,

sending A to HS∞
A/(R,D), is the left adjoint of U .

Proof. Essentially immediate from the explicit construction given of HS∞
A/(R,D).

That is, given an R-algebra map f : A→ (B,DB), there is an obvious, unique

way to lift f to a D-(R,D)-algebra map f∞ : HS∞
A/(R,D) → (B,DB). For

example, for x(i) ∈ HS∞
A/(R,D), x ∈ A, then f∞(x(i)) = DB

i (f(x)).

The next result is what Vojta calls the second fundamental exact sequence,

adapted to our context. For completeness, we include his proof, which carries

over directly.

Proposition 1.22 (Second fundamental exact sequence): Let (R,D) be a D-

ring and R→ A→ B a sequence of ring homomorphisms. Assume that A→ B

is surjective, and let I be its kernel. Let J be the ideal in HSmA/(R,D) generated

by {dix : i ≤ m,x ∈ I}. Then the following sequence is exact.

0 −→ J −→ HSmA/(R,D) −→ HSmB/(R,D) −→ 0

In the definition of J , it suffices to let x vary over a set of generators of I.
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Proof. Exactness on the left is immediate. The natural map h : HSmA/(R,D) −→

HSmB/(R,D) is surjective and its kernel contains J , so it remains to show that

Ker(h) = J .

From the definition of HSm, we have the following commutative diagram.

0 // K //

f

��

A[x(i)]x∈A,i=1,...,m
//

g

��

HSmA/(R,D)
//

h

��

0

0 // K ′ // B[x(i)]x∈B,i=1,...,m
// HSmB/(R,D)

// 0

By Definition 1.9, the map f is surjective, so by the Snake Lemma, Ker(g) maps

onto Ker(h). But Ker(g) is generated by

I ∪ {dix− diy : i = 1, . . . ,m; x, y ∈ A; x− y ∈ I}.

This implies that the kernel of h is generated by the set

{dix : i = 0, . . . ,m, x ∈ I},

as desired.

The next two results also occur in Vojta [Voj06].

Proposition 1.23: Let (R,D) be a D-ring, andA = R[xi]i∈I . Then HSmA/(R,D)

is the polynomial algebra A[djxi]i∈I,j=1,...,m.

Proof. Essentially obvious, but also proved in [Voj06].

Corollary 1.24: Let A be an (R,D)-algebra, A ∼= R[xi]i∈I/(fj)j∈J . Then

HSmA/(R,D)
∼= A[dkxi]i∈I,k=1,...,m/(dkfj)j∈J,k=1,...,m.

Suppose further that all of the coefficients of the polynomials fj , j ∈ J , are

constants in the ring R. Then HSmA/(R,D) is the same as HSmA/R, as defined by

Vojta.

Proof. The first statement follows from Propositions 1.22 and 1.23. The second

follows from the first, and the analogous statement from [Voj06].
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2. Prolongations

In this section, we assume throughout that (K,D) is a D-field. Probably every-

thing also works over D-rings. We define prolongations of schemes/varieties over

(K,D). In characteristic 0, we essentially get Buium’s prolongations, though

there is a slight difference since we are using higher derivations. The construc-

tion of the prolongations is direct, but the results of the previous section provide

the connection with representable functors. In characteristic 0, this agrees with

Buium, but in characteristic p > 0, it avoids problems that would arise if one

tries to adapt Buium directly to characteristic p, involving ‘dividing by p.’

Lemma 2.1: Let A be a (K,D)-algebra and S a multiplicative subset of A.

Then there is an isomorphism

HSmA/(K,D) ⊗A S
−1A −→ HSmS−1A/(K,D).

Proof. For all a ∈ A, let a denote the image of a in S−1A under the canonical

map. We show that the natural map φ that sends dia⊗s−1b to s−1b ·dia, for all

a, b ∈ A, s ∈ S, and i ≤ m, is an isomorphism. Clearly, φ is a homomorphism.

By the quotient rule, for i ≤ m and s−1b ∈ S−1A, di(s
−1b) can be written as

s−nc, for some c ∈ HSmA/(K,D), so φ is surjective. To show that φ is injective, it

suffices to define its inverse. Let s−1b ∈ S−1A. We want to define φ−1(di(s
−1b))

as c ⊗ s−n, but for this we need to check that if s−1b = t−1c in S−1A, then

φ−1(di(s
−1b)) = φ−1(di(t

−1c)), for all i ≤ m. To simplify the presentation, let

us assume that s = t = 1. As b = c in S−1A is equivalent to there being an

s ∈ S such that s(c− b) = 0 in A, it suffices for us to show that for all a ∈ A, if

a = 0 in S−1A, that is, there is s ∈ S such that sa = 0 in A, then dia⊗ 1 = 0

in HSmA/(K,D) ⊗A S
−1A, for i ≤ m.

We argue by induction on i. The case i = 0 is obvious, so assume that we

have proved that dja⊗ 1 = 0 in HSmA/(K,D) ⊗A S
−1A, for all j < i. Then

0 = sa⊗ 1 = di(sa)⊗ 1 =
∑

j+k=i

(djsdka⊗ 1) = sdia⊗ 1 = (dia⊗ 1)(1⊗ s),

so (dia⊗ 1) = 0 in HSmA/(K,D) ⊗A S
−1A, as desired.
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The next theorem is the differential version of Theorem 4.3 of [Voj06], and is

an easy consequence of Lemma 2.1, exactly as in Vojta.

Theorem 2.2: Let X be a K-scheme. For all m, there exists a sheaf of OX -

algebras HSmX/(K,D) such that (i) for each open affine SpecA ⊆ X , there is an

isomorphism

φA : Γ(SpecA,HSmX/(K,D)) −→ HSmA/(K,D)

of (K,D)-algebras, and (ii) the various φA are compatible with the localization

isomorphism of Lemma 2.1. Moreover, the collection ((HSmX/(K,D)), (φA)A) is

unique.

Definition 2.3: Let X be a K-scheme. For all m, the m-th prolongation of X

is the scheme

Pm(X/(K,D)) := SpecHSmX/(K,D).

Suppose that A is a (K,D)-algebra. We write

Pm(A/(K,D)) = Pm(SpecA/(K,D)),

which equals SpecHSmA/(K,D).

We will also write X(m) or Pm(X) for Pm(X/(K,D)).

(For the definition of Spec, see, for example, [Har77] Ch. II, Ex. 5.17.)

Recall that Km = K[t]/(tm+1), for m < ∞, K∞ = K[[t]], and that e : K →

Km denotes the twisted homomorphism. We also let e : SpecKm → SpecK

denote the corresponding twisted morphism of schemes. Given a K-scheme Y ,

let (Y ×K SpecKm)̃ denote the scheme (Y ×K SpecKm) made into a K-scheme

via the map e ◦ p : (Y ×K SpecKm) → SpecK, where p : (Y ×K SpecKm) →

SpecKm is the canonical projection.

Theorem 2.4 (Buium): Let X be a K-scheme. For all m, the scheme Pm(X)

represents the functor from K-schemes to sets given by

Y 7→ HomK((Y ×K SpecKm)̃, X).

Proof. For X and Y affine, this follows immediately from Corollary 1.20. The

general case follows by gluing affines.

Recall that given a K-scheme X , the m-th jet space of X , which we denote

Jm(X), is the scheme that represents the following functor from K-schemes to
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sets.

Y 7→ HomK(Y ×K SpecKm, X)

Buium’s theorem clarifies the relationship between prolongations and jets. One

also has the following fact, due again to Buium.

Proposition 2.5: Let X be a (K,D)-scheme such that X = X ′ ×C SpecK,

where C is the field of constants of K, and X ′ is some C-scheme. (That is, X

descends to, or is defined over, C.) Then for all m, Pm(X) ∼= Jm(X).

Proof. This follows from Corollaries 1.24 and 2.10, below, and the description

of jets in [Voj06] (see, for example, Theorem 4.3 and Definition 4.4).

The next result, due to Moosa, Pillay, and Scanlon, generalizes the well-

known fact that for all m,n ≤ ∞, Jm(Jn(X)) = Jn(Jm(X)), which can be

seen by observing that they represent the same functor. In the original version

of [MPS07] it was stated without proof. A revised version contains a proof using

the Weil restriction.

Theorem 2.6 (Moosa, Pillay, and Scanlon): Let X be a K-scheme. For all

m,n ≤ ∞,

Jm(Pn(X)) ∼= Pn(Jm(X)).

Proof. We include two proofs. The first is direct and uses the construction of

jets and prolongations from [Voj06] and this paper. The second, closer in spirit

to [MPS07], shows that Jm(Pn(X)) and Pn(Jm(X)) represent the same functor.

It suffices to prove this for affine schemes, so assume that X = SpecA. Even

though K is a differential field, we will use HSmA/K to denote the A-algebra

defined by Vojta, which is defined exactly like HSmA/(K,D) in Definition 1.9,

except that one replaces condition (3) with

f(r)(i) : r ∈ K, i = 1, . . . ,m.

The point from our perspective is that Spec HSmA/K is the m-th jet space of X ,

while Spec HSmA/(K,D) is the m-th prolongation of X . Thus

Jm(Pn(X)) = Spec HSmHSn
A/(K,D)

/K

and

Pn(Jm(X)) = Spec HSnHSm
A/K

/(K,D).
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We want to show that the twoK-algebras above are isomorphic. Let us use d for

the universal derivation on HSm, corresponding to jets, and δ for the universal

derivation on HSn, corresponding to prolongations. An arbitrary element of

HSmHSn
A/(K,D)

/K can be written as a sum of terms

diδja : i ≤ m, j ≤ n, a ∈ A,

and an arbitrary element of HSnHSm
A/K

/(K,D) as a sum of terms

δjdia : i ≤ m, j ≤ n, a ∈ A.

We claim that the K-algebra morphism θ : HSmHSn
A/(K,D)

/K → HSnHSm
A/K

/(K,D)

with θ(diδja) = δjdia is an isomorphism.

First we check that θ is well-defined. For example,

di (δj(a+ b)− δj(a)− δj(b)) = 0,

so we check

θ (di(δj(a+ b)− δj(a)− δj(b))) = δj(di(a+ b)− di(a)− di(b)) = 0.

Likewise,

0 = di(δj(ab)−
∑

k+l=j

δk(a)δl(b) = diδj(ab)−
∑

k+l=j

di(δk(a)δl(b))

= diδj(ab)−
∑

k+l=j

∑

m+n=i

dmδk(a)dnδl(b).

And we check

θ

(
diδj(ab)−

∑

k+l=j

∑

m+n=i

dmδk(a)dnδl(b)

)
=δjdi(ab)−

∑

m+n=i

∑

k+l=j

δkdm(a)δldn(b)

=δjdi(ab)−
∑

m+n=i

δj(dm(a)dn(b))

=δj

(
di(ab)−

∑

m+n=i

dm(a)dn(b)

)
=0.

Finally, for c ∈ K, we have 0 = di(δj(c)− δ0Dj(c)). For i ≥ 1,

θ(di(δj(c)− δ0Dj(c))) = δjdi(c)− δ0di(Dj(c)) = 0

and, for i = 0,

θ(d0(δj(c)− δ0Dj(c))) = δjd0(c)− δ0d0(Dj(c)) = δj(c)− δ0(Dj(c)) = 0.
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Now that we know that θ is well-defined, it is clear from the definition that

it respects sums and products. Finally, it is clearly a bijection, since there is an

obvious inverse.

We now give a second proof, along the lines of [MPS07]. Let Y be aK-scheme.

There are natural bijections

HomK (Y, Jm (Pn(X))) ' HomK (Y ×K SpecKm, Pn(X))

' HomK (((Y ×K SpecKm)×K SpecKn)̃ , X)

and also natural bijections

HomK (Y, Pn (Jm(X))) ' HomK ((Y ×K SpecKn)̃ , Jm(X))

' HomK (((Y ×K SpecKn)̃ ×K SpecKm) , X)

Thus, it suffices to show that for all Y ,

((Y ×K SpecKm)×K SpecKn)̃ ∼= ((Y ×K SpecKn)̃ ×K SpecKm) .

In fact, it suffices to prove this for Y affine. We rephrase this as a ques-

tion about isomorphisms of K-algebras. Given a K-algebra C, let us write

(C⊗KKn)̃ for what we called C̃n in Definition 1.13. This more closely parallels

our notation for schemes. That is, for Z = SpecC, then (Z ×K SpecKn)̃ =

Spec ((C ⊗K Kn)̃ ).

Everything reduces to showing that, for all Y = SpecB, the following are

isomorphic.

((B ⊗K Kn)̃⊗K Km) ∼= ((B ⊗K Km)⊗K Kn)̃

Let us write Km = K[t]/(tm+1), Kn = K[u]/(un+1), and use e for the twisted

map from K to Kn.

Note that the ‘trivial’ map

φ : ((B ⊗K Kn)̃⊗K Km) −→ ((B ⊗K Km)⊗K Kn)̃

that sends

(1⊗ f(t)⊗ g(u)) 7→ (1⊗ g(u)⊗ f(t))

is not well-defined. For example, for c ∈ K, in ((B ⊗K Kn)̃⊗K Km),

(1⊗ 1⊗ c) = (1⊗ e(c)⊗ 1)

yet, in ((B ⊗K Km)⊗K Kn)̃,

φ(1 ⊗ 1⊗ c) 6= φ(1⊗ e(c)⊗ 1).
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But a slight variation of this map does work.

First we claim that any non-zero element of ((B ⊗K Kn)̃ ⊗K Km) can be

written uniquely as a sum,
∑

i≤m,j≤n(bij ⊗ uj ⊗ ti). Clearly, it suffices to prove

this for elements of the form (b⊗ a1u
j ⊗ a2t

i). And we see that

(b ⊗ a1u
j ⊗ a2t

i) = (b⊗ e(a2)a1u
j ⊗ ti) =

∑

k≤n

(
b ⊗Dk(a2)a1u

j+k ⊗ ti
)

=
∑

k≤n

(
Dk(a2)a1b ⊗ u

j+k ⊗ ti
)
,

as desired. Uniqueness is obvious. Next we observe that this also holds in the

algebra ((B⊗KKm)⊗KKn)̃. Note that (b⊗a1t
i⊗a2u

j) ∈ ((B⊗KKm)⊗KKn)̃

equals (a1a2b⊗ t
i ⊗ uj).

Define

θ : ((B ⊗K Kn)̃⊗K Km) −→ ((B ⊗K Km)⊗K Kn)̃

by θ(b ⊗ uj ⊗ ti) = (b ⊗ ti ⊗ uj). Clearly, θ is a ring homomorphism and

injective, but we need to show that it is K-linear and surjective. (This sounds

completely obvious, but the ’̃s make this more subtle than it first appears.) Let

c ∈ K, (b⊗ uj ⊗ ti) ∈ ((B ⊗K Kn)̃⊗K Km). Then

c · (b ⊗ uj ⊗ ti) = (b ⊗ uj ⊗ cti) =
∑

k≤n

(
Dk(c)b ⊗ u

j+k ⊗ ti
)

and

θ

( ∑

k≤n

(Dk(c)b ⊗ u
j+k ⊗ ti)

)
=

∑

k≤n

(
Dk(c)b ⊗ t

i ⊗ uj+k
)

=
∑

k≤n

(
b ⊗ ti ⊗Dk(c)u

j+k
)

= (b⊗ ti ⊗ e(c)uj) = c · (b⊗ ti ⊗ uj).

This proves K-linearity.

To prove that θ is surjective, it will suffice to show that for all c ∈ K, that

(1 ⊗ 1 ⊗ c) ∈ ((B ⊗K Km) ⊗K Kn)̃ is in the image of θ. The rest then follows

easily. By Proposition 1.14, we can rewrite c as c =
∑
k≤n e(ck)u

k, so we get

that

(1⊗ 1⊗ c) =

(
1⊗ 1⊗

∑

k≤n

e(ck)u
k

)
=

∑

k≤n

(
e(ck)⊗ 1⊗ uk

)
.

Thus θ
(∑

k≤n(e(ck)⊗ uk ⊗ 1)
)

= (1 ⊗ 1⊗ c).
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For completeness, we mention the following, which can be proved in the same

way as the previous theorem.

Theorem 2.7: Let X be a K-scheme, m,n ≤ ∞. Then

Pm(Pn(X)) = Pn(Pm(X)).

Remark 2.8: Let X be a K-scheme. For 0 ≤ m ≤ n ≤ ∞, the maps fmn :

HSmA/(K,D) → HSnA/(K,D) of Remark 1.10.(3) give rise to morphisms

fmn : HSmX/(K,D) −→ HSnX/(K,D)

which again form a directed system.

In terms of schemes, the fmn give morphisms

πnm : Pn(X/(K,D)) −→ Pm(X/(K,D))

which also form a directed system. By Remark 1.10.(3),

HS∞
X/(K,D) = lim

−→

i∈N

HSiX/(K,D)

and

P∞(X/(K,D)) = lim
←−

i∈N

Pi(X/(K,D)).

Functorial properties. There are numerous easy to verify functorial prop-

erties of these constructions, exactly as in [Voj06]. We only mention a few here.

Some more general results hold.

For all m, HSmA/(K,D) is functorial in pairs (K,D)→ A, and HSmX/(K,D) and

Pm(X/(K,D)) are functorial in pairs X → SpecK. Given a commutative

diagram

A
φ // A′

(K,D)

OO

// (K ′, D)

OO

there is an induced commutative diagram

HSmA/(K,D)

HSm
φ // HSmA′/(K′,D)

A

φ

OO

// A′

OO
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that takes dia ∈ HSmA/(K,D) to diφ(a) ∈ HSmA′/(K′,D) for all a ∈ A and all i ≤ m.

Two important cases are base change in (K,D), and functoriality in A, when

K = K ′. One also has the following easy lemma.

Lemma 2.9: Let A be a (K,D)-algebra, (K ′, D) a D-extension field of K, and

A′ = A⊗K K ′. Then HSmA′/(K′,D)
∼= HSmA/(K,D) ⊗K K ′ as A′-algebras.

Proof. Let φ be the map from HSmA′/(K′,D) to HSmA/(K,D) ⊗K K ′ that sends

dk(a ⊗ c), k ≤ m, a ∈ A, c ∈ K, to
∑

i+j=k(dia ⊗ 1)(1 ⊗Djc)). It is clear that

φ is an isomorphism.

These properties carry over to schemes. The next result is an easy corollary

of the above lemma.

Corollary 2.10: Let (K,D) be a D-field, and let (K ′, D) be a D-field exten-

sion. Then for all K-schemes X and all m,

Pm(X ×K SpecK ′) ∼= Pm(X)×K SpecK ′.

If f : X → X ′ is a morphism of K-schemes, one has the following commuta-

tive diagram, which lifts f to a map between prolongations.

Pm(X)

��

Pm(f)
// Pm(X ′)

��
X

f // X ′

Lemma 2.11: Let X,X ′ be K-schemes, and f : X → X ′ a closed immersion.

Then Pm(f) : Pm(X)→ Pm(X ′) is also a closed immersion.

Proof. It is enough to check locally, on affines, where it follows from Proposi-

tion 1.22.

The following propositions are versions of standard facts about jet spaces,

and can be proved in the same way (for example, see [Bli05]).

Proposition 2.12: Let f : X → Y be an étale morphism of schemes over a

D-field (K,D). Then for all m,

Pm(X) ∼= X ×Y Pm(Y ).
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Proof. We argue on the corresponding functor of points. For any K-scheme Z,

HomK(Z,Pm(X)) ' HomK((Z ×K SpecKm)̃, X)

HomK(Z,X ×Y Pm(Y ))

' HomK(Z,X)×HomK(Z,Y ) HomK(Z,Pm(Y ))

' HomK(Z,X)×HomK(Z,Y ) HomK((Z ×K SpecKm)̃, Y )

Consider the following diagram.

X // Y

Z

φ

OO

// (Z ×K SpecKm)̃

ψ

OO

(with a diagonal arrow τ from (Z ×K SpecKm)̃ to X). A morphism τ is a

Z-valued point of Pm(X), and determines a pair of morphisms

(φ, ψ) ∈ HomK(Z,X)×HomK(Z,Y ) HomK((Z ×K SpecKm)̃, Y ),

which determines a Z-valued point of X ×Y Pm(Y ). This gives the canonical

map from Pm(X) to X ×Y Pm(Y ), which does not depend on any properties of

the morphism f .

In the other direction, a Z-valued point of X×Y Pm(Y ) corresponds to a pair

of morphisms (φ, ψ) making the above diagram commute. By formal étaleness,

there is a unique τ completing the diagram. Thus, the map taking (φ, ψ) to τ

determines the inverse morphism from X×Y Pm(Y ) to Pm(X), as desired.

Proposition 2.13: Let X be a smooth scheme over the D-field (K,D) of

dimension n. Then for all m ∈ N, Pm(X) is an Anm-bundle over X . (That is,

X can be covered by open sets U such that Pm(U) ∼= U ×K Anm.)

Proof. By hypothesis, X → SpecK is a smooth map, so, by [EGA], this implies

that there is a covering of X by open sets Ui, such that for all i, the following

diagram commutes

Ui

��

gi // An

��
K

= // K

and gi is étale. By the previous proposition, Pm(Ui) ∼= Ui×Anm, as desired.

By the same argument, one also gets the following.
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Corollary 2.14: Let X be an n-dimensional smooth scheme over the D-field

(K,D). Then for all m, Pm+1(X) is an An-bundle over Pm(X).

3. D-Schemes

Many of the definitions and results in this section are from [Bui93].

Definition 3.1: Let (K,D) be a D-field. A D-scheme over (K,D) is aK-scheme

X such that OX is a structure sheaf of D-(K,D)-algebras. A morphism of D-

schemes is a morphism of K-schemes such that the map OY → f∗OX is a map

of sheaves of D-(K,D)-algebras.

Example 3.2: Let X be a K-scheme. Then P∞(X) is a D-scheme. Given a

morphism f : X → Y of K-schemes, the induced map f∞ : P∞(X) → P∞(Y )

is a morphism of D-schemes.

Proposition 3.3: Let (A,D) be an D-(K,D)-algebra. There exists a D-

scheme X = D-Spec(A,D) such that, forgetting the D-structure on X , X is

isomorphic to SpecA.

Proof. To show that one can add a D-structure to SpecA, it suffices to show

that the localization of a D-ring is itself a D-ring. This is the content of

Lemma 1.7.

One also has the following D-version of a well-known fact from algebraic

geometry. (See [Har77], II. Ex. 2.4 and Prop. II.2.3, or [EH00] Thm. I-40.)

Proposition 3.4: Let (A,D) be a D-ring, and (X,OX) a D-scheme. Then

there is a bijection:

χ : HomD−Sch(X, SpecA) −→ HomD−Ring(A,Γ(X,OX)).

Proof. In the usual case, given a morphism f : X → SpecA, and the associated

map f# : OSpecA → f∗OX , one gets a homomorphism A→ Γ(X,OX) by taking

global sections. This gives a bijection

χ : HomSch(X, SpecA) −→ HomRings(A,Γ(X,OX)).

By definition, if f : X → D-SpecA is a D-morphism, then the induced ho-

momorphism A −→ Γ(X,OX) is a homomorphism of D-rings, so one has an
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injection:

χD : HomD−Sch(X,D-SpecA) −→ HomD−Ring(A,Γ(X,OX)).

To verify surjectivity, it suffices to look carefully at the construction of χ−1 in

[EH].

Remark 3.5: Let X ⊆ An be an affine K-scheme,

Γ(X,OX) = K[xi]i=1,...,n/(fj)j∈J .

For allm, Pm(X) is the closed subscheme of Anm=Spec(K[dkxi]i=1,...,n,k=0,...,m)

with

Γ(Pm(X),OPm(X)) = K[dkxi]i=1,...,n,k=0,...,m/(dkfj)j∈J,k=0,...,m.

(This follows from Proposition 1.24.) In particular, for every closed point

(a1, . . . , an) ∈ X , the point (Dkai)i=1,...,n,k=0,...,m is in Pm(X). The canoni-

cal projection from Pm(X) to X maps a closed point (aik)i=1,...,n,k=0,...,m to its

first n coordinates, (ai0)i=1,...,n.

Next, we define D-polynomial maps between schemes, which we use to define

a section of the canonical map πm : Pm(X)→ X .

Proposition 3.6: Let (K,D) be a D-field. The prolongation functor, that

takes aK-schemeX to the D-scheme P∞(X), is the right adjoint to the forgetful

functor Y 7→ Y ! from D-schemes to K-schemes.

Proof. In [Bui93], p. 1405. This also follows easily from Proposition 1.21.

Recall that given a K-scheme X , a K-rational point of X is a K-scheme

homomorphism from SpecK to X . Likewise, if X is a D-scheme, we will say

that a K-rational point of X is a D-scheme homomorphism from D-SpecK to

X . Of course, a D-morphism f : X → Y naturally induces a map between their

K-rational points. The previous proposition immediately implies that there is

a natural bijection between K-rational points of X and of P∞(X).

Definition 3.7: Let X,Y be K-schemes, and f : P∞(X) → P∞(Y ) be a D-

morphism. The natural bijections

χ : HomK(SpecK,X) −→ Hom(K,D)(D-SpecK,P∞(X))

and

ζ : HomK(SpecK,Y ) −→ Hom(K,D)(D-SpecK,P∞(Y ))
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and the induced map

f̂ : Hom(K,D)(D-SpecK,P∞(X)) −→ Hom(K,D)(D-SpecK,P∞(Y ))

determine a (set theoretic) map from K-rational points of X to those of Y ,

given by ζ−1 ◦ f̂ ◦ χ.

A D-polynomial map from X to Y is a map on K-rational points of the

form ζ−1 ◦ f̂ ◦ χ, for some D-morphism f : P∞(X)→ P∞(Y ).

SchemesX and Y are D-polynomially isomorphic if there are D-polynomi-

al maps f : X → Y and g : Y → X such that g ◦ f = IdX and f ◦ g = IdY .

Remark 3.8: Let X = Spec(K[xi]i≤n/(fj)j∈J ), so that

P∞(X) = Spec(K[dkxi]i≤n,k<∞/(dkfj)j∈J,k<∞).

The bijection χ takes h ∈ HomK(SpecK,X), which is determined by bi = h(xi),

i≤n, to H∈Hom(K,D)(SpecK,P∞(X)) determined by Dkbi = H(dkxi), i ≤ n.

Proposition 3.9: Let X be a K-scheme, and m < ∞. There exists a D-

polynomial map ∇m : X → Pm(X) that is a section of the canonical projection

pm : Pm(X)→ X .

Let f : X → Y be a morphism of K-schemes. Considering f and Pm(f) as

maps on K-rational points, the following diagram commutes.

Pm(X)
Pm(f) // Pm(Y )

X

∇m

OO

f // Y

∇m

OO

Proof. By the adjointness of P∞(−) and (−)!, there is a natural bijection

HomK((P∞(X))!, Pm(X)) ' Hom(K,D)(P∞(X), P∞(Pm(X))).

Let f : P∞(X)→ P∞(Pm(X)) be the D-morphism corresponding to the canon-

ical projection from (P∞(X))! to Pm(X), and let ∇m be the D-polynomial map

corresponding to f . We show that ∇m has the desired properties.
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It suffices to check locally, so suppose thatX is given as Spec(K[xi]i≤n(fj)j∈J).

By Remark 3.5,

Pm(X) = Spec(K[dkxi]k≤m,i≤n/(dkfj)k≤m,j∈J )

P∞(X) = Spec(K[dkxi]k<∞,i≤n/(dkfj)k<∞,j∈J )

P∞(Pm(X)) = Spec(K[dldkxi]i≤n,k≤m,l<∞/(gh)h∈H)

where (gh)h∈H is the ideal generated by (dldkfj)j∈J,k≤m,l<∞. The D-morphism

from P∞(X) to P∞(Pm(X)), corresponding to the projection morphism from

P∞(X) to Pm(X) is determined by the D-algebra homomorphism

K[dldkxi]i≤n,k≤m,l<∞/(gh)h∈H −→ K[dkxi]k<∞,i≤n/(dkfj)k<∞,j∈J

that sends dldkxi to
(
k+l
k

)
dk+lxi. One can then see that this determines the

D-polynomial map from X to Pm(X) that takes the closed point (ai)i≤n to

(Dkai)i≤n,k≤m. By Remark 3.5, this is a section of πm.

Next we argue that Pm(f) ◦ ∇X = ∇Y ◦ f . Again, it suffices to prove this

for affine schemes, so assume that X = SpecK[x]/I and Y = SpecK[y]/J . Let

S = K[x]/I and R = K[y]/J , and let f also denote the homomorphism from

R to S corresponding to f : X → Y . A K-rational point of X corresponds

to a homomorphism g from S to K, which is determined by the image of x,

so we think of a K-rational point as a tuple a = g(x) of elements of K. Also

Pm(X) = Spec HSmS/(K,D) is affine, and HSmS/(K,D) is generated by (dkx)x∈x,k≤m.

We saw above that

∇X(a) = (a,D1(a), . . . , Dm(a)).

More precisely, ∇X(a) is the K-rational point of Pm(X) that corresponds to

the map that sends dkx ∈ HSmS/(K,D) to Dk(g(x)) ∈ K, for x ∈ x.

Let f(a) = b ∈ Y , b = (g◦f(y))y∈y. As above,∇Y (b) = (b,D1(b), . . . , Dm(b)).

As a map of K-algebras, Pm(f) sends dky to dkf(y), for y ∈ y, k ≤ m. Thus,

Pm(f)(a,D1(a), . . . , Dm(a)) = (b,D1(b), . . . , Dm(b))

as desired.

The following result is new. It generalizes the well-known fact that the first

prolongation of a variety is differentially isomorphic to the tangent space. The

standard proof is geometric, using the existence, for any variety X , of a differ-

ential section ∇ : X → P1(X), and fact that P1(X) is a TX-torsor. In contrast,

our proof below is completely algebraic, though in remarks after the proof we
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try to provide some geometric intuition. (Recall that, in general for m > 1,

Jm(X) is not a group scheme over X , so Pm(X) is not a torsor under Jm(X).

Thus one cannot generalize the standard proof.)

Theorem 3.10: Let X be a K-scheme.

(1) P∞(Pm(X)) and P∞(Jm(X)) are isomorphic as D-schemes.

(2) Pm(X) and Jm(X) are D-polynomially isomorphic.

Proof. Part (2) follows immediately from (1), so it suffices to prove (1). We

first establish this for affine schemes. The general argument follows by gluing.

Let X = SpecA. Note that

P∞(Pm(X)) = Spec
(
HS∞

HSm
A/(K,D)

/(K,D)

)

and

P∞(Jm(X)) = Spec
(
HS∞

HSm
A/K

/(K,D)

)
.

Thus we must show that HS∞
HSm

A/(K,D)
/(K,D) and HS∞

HSm
A/K

/(K,D) are isomorphic

as D-(K,D)-algebras. Therefore, the theorem follows from the following

Proposition 3.11: Let A be a (K,D)-algebra. Then
(
HS∞

HSm
A/(K,D)

/(K,D), D
)
∼=

(
HS∞

HSm
A/K

/(K,D), D
)
.

Proof of Proposition. We first treat the case A a polynomial ring, A = K[x],

where x is a (possibly infinite) tuple. Write

R := HS∞
HSm

A/(K,D)
/(K,D)

∼= K[diδjx]0≤i<∞,0≤j≤m,x∈x

S := HS∞
HSm

A/K
/(K,D)

∼= K[di∂jx]0≤i<∞,0≤j≤m,x∈x.

(Note that diδjx and di∂jx are individual symbols. One could just have well

written instead xij , but the chosen notation is more suggestive. Below, we often

write δjx, or ∂jx, for d0δjx, or d0∂jx, since we are thinking of d0 as the ‘identity

map.’) Observe that R and S are also D-rings, letting Dl(diδjx) =
(
i+l
l

)
di+lδjx

in R, likewise for S. We often write Di∂jx, or Diδjx, for di∂jx, or diδjx.

These rings are obviously isomorphic, but we want to construct an isomor-

phism that we can also use in the general case, B = K[x]/I, I any ideal.

Let φ : R→ S be the K-algebra homomorphism determined by setting

φ(diδjx) = Di

( ∑

k+l=j

dk∂lx

)
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for all i, j, and x. (Of course, φ(c) = c, for c ∈ K.) Moreover, it is clear that φ

is actually a D-(K,D)-algebra homomorphism.

To prove that φ is an isomorphism, we define a homomorphism ψ : S → R

and show that they are inverses of each other. Let ψ be the homomorphism

determined by, for all i, j, and x,

ψ(di∂jx) = Di

( ∑

k+l=j

(−1)kDkδlx

)

As above, one sees easily that ψ is also a D-(K,D)-algebra homomorphism.

First, we show that ψ◦φ = IdR. It suffices to calculate this on the generators,

diδjx.

ψ ◦ φ(diδjx) = ψ

(
Di

∑

k+l=j

dk∂lx

)
= Di

( ∑

k+l=j

ψ(dk∂lx)

)

= Di

( ∑

k+l=j

Dk

( ∑

a+b=l

(−1)aDaδbx

))

= Di(δjx) +Di

( j−1∑

b=0

( ∑

a+k=j−b

(−1)aDaDkδbx

))

= diδjx+Di

( j−1∑

b=0

( ∑

a+k=j−b

(−1)a
(
j−b
a

)
Dj−bδbx

))
= diδjx

using the identity (1− 1)n =
∑n
i=0(−1)i

(
n
i

)
= 0, for n = j − b. Next, we show

that φ ◦ ψ = IdS , arguing again only on generators.

φ ◦ ψ(di∂jx) = φ

(
Di

∑

k+l=j

(−1)kDkδlx

)
= Di

( ∑

k+l=j

(−1)kDkφ(δlx)

)

= Di

( ∑

k+l=j

(−1)kDk

∑

a+b=l

Da∂bx

)

= Di(∂jx) +

( j−1∑

b=0

∑

k+a=j−b

(−1)kDkDa∂bx

)

= di∂jx+

( j−1∑

b=0

j−b∑

k=0

(−1)k
(
j−b
k

)
∂bx

)
= di∂jx

This completes the proof for A a polynomial ring. We now consider the

general case B a K-algebra, B = K[x]/I, I an ideal. By Corollary 1.24
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and the analogous result in Vojta, one gets the following description of U :=

HS∞
HSm

B/(K,D)
/(K,D). (We change the notation slightly, adding d0 and ∂0 as ‘iden-

tity functions.’)

U ∼= K[diδjx]0≤i,0≤j≤m,x∈x/(diδjf)0≤i,0≤j≤m,f∈I

For a polynomial h ∈ K[x], the expression diδjh should be considered short-

hand for an element of the polynomial ring K[diδjx]0≤i,0≤j≤m,x∈x, that can be

specified inductively as follows.

diδjc =
(
i+j
i

)
Di+j(c) for c ∈ K;

diδj(f + g) = diδjf + diδjg;

diδj(fg) =
∑
s+t=i

( ∑
k+l=j(dsδkf)(dtδlg)

)
.

Likewise, we get the following description of V := HS∞
HSm

B/K
/(K,D).

V ∼= K[di∂jx]0≤i,0≤j≤m,x∈x/(di∂jf)0≤i,0≤j≤m,f∈I

In V , diδjh is defined as in U , except that for c ∈ K, di∂jc = 0 for j > 0, and

di∂jc = Dic for j = 0.

Rings U and V are quotients of R and S, defined above, U = R/J and

V = S/L, where J and L are the ideals from the definitions of U and V . We

claim that the isomorphism φ from R to S naturally induces an isomorphism

from U to V . To prove this, it will suffice to show that φ(J) ⊆ L and ψ(L) ⊆ J .

This follows immediately from the next two claims.

Claim 1. 1: For each polynomial h ∈ A and diδjh ∈ R,

φ(diδjh) = Di

( ∑

k+l=j

dk∂lh

)
.

Claim 2. 1: For each polynomial h ∈ A and di∂jh ∈ S,

ψ(di∂jh) = Di

( ∑

k+l=j

(−1)kDkδlh

)
.

Proof of Claim 1. Since all maps being considered are additive, it suffices to

consider the case h a monomial, h = ay, a ∈ K and y = (y1, . . . , yn). We

introduce the following multi-index notation. A multi-index α, (β, γ, etc.) is a
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sequence of non-negative integers, α = (α1, . . . , αn). We say that the length

of α is n, and write
∑
α for

∑
i αi.

Using the (generalized) product rule, we can now give an explicit definition,

in R, of

diδjay := Di

( ∑

k+l=j

δkaδly

)
= Di

( ∑

k+l=j

Dka ·

( ∑

|α|=n,
∑
α=l

δα1y1 · · · δαnyn

))

Likewise, there is an analogous definition for elements of the ring S.

diδjay := Di

(
a ·

( ∑

|α|=n,
∑
α=j

δα1y1 · · · δαnyn

))

We now calculate φ(diδjh) and Di(
∑

k+l=j dk∂lh) to show they are equal.

Thus

φ

(
Diδjay

)
= φ

(
Di

( j∑

k=0

Dka ·

( ∑

|α|=n,
∑
α=j−k

δα1y1 · · · δαnyn

)))

= Di

( j∑

k=0

Dka ·

( ∑

|α|=n,
∑
α=j−k

φ

(
δα1y1 · · · δαnyn

)))

= Di

( j∑

k=0

Dka ·

( ∑

|β|=|γ|=n,
∑
β+

∑
γ=j−k

dβ1∂γ1y1 · · · dβn∂γnyn

))

and

Di

( ∑

l+m=j

dl∂may

)

= Di

( j∑

l=0

Dl

(
a

∑

|α|=n,
∑
α=j−l

∂α1y1 · · ·∂αnyn

))

= Di

( j∑

l=0

∑

k+m=l

Dka ·

(
Dm

∑

|α|=n,
∑
α=j−l

∂α1y1 · · ·∂αnyn

))

= Di

( j∑

k=0

Dka ·

( ∑

|β|=|γ|=n,
∑
β+

∑
γ=j−k

dβ1∂γ1y1 · · ·dβn∂γnyn

))
.

This completes the proof of Claim 1.
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Proof of Claim 2. Again we can assume that h is a monomial, h = ay, a ∈ K,

and y = (y1, . . . , yn). We want to show that ψ(di∂jay) equals

Di

∑

k+l=j

(−1)kDkδl(ay).

We calculate

ψ

(
di∂jay

)
= aDiψ

(
∂jy

)
= aDiψ

( ∑

|α|=n,
∑
α=j

δα1y1 · · · δαnyn

)

= aDi

( ∑

k+l=j

∑

|β|=|γ|=n,
∑
β=k

∑
α=l

(−1)kdβ1δγ1y1 · · · dβnδγnyn

)

= aDi

( ∑

k+l=j

(−1)kDkδly

)

and

Di

( ∑

k+l=j

(−1)kDkδlay

)

=Di

( ∑

s+t+u+v=j

(−1)s+uDsδta ·Duδvy

)

=aDi

( ∑

u+v=j

(−1)uDuδvy

)
+Di

∑

u+v<j

( ∑

s+t=j−(u+v)

(−1)s+uDsδta ·Duδvy

)

=aDi

( ∑

u+v=j

(−1)uDuδvy

)

+Di

∑

u+v<j

(
(−1)u

∑

s+t=j−(u+v)

(−1)s
(
s+t
s

)
Ds+ta ·Duδvy

)

=aDi

( ∑

u+v=j

(−1)uDuδvy

)

+Di

∑

u+v<j

(
(−1)u

j−(u+v)∑

s=0

(−1)s
(
j−(u+v)

s

)
Dj−(u+v)a ·Duδvy

)

=aDi

( ∑

u+v=j

(−1)uDuδvy

)
.

This completes the proof of Claim 2.

This also completes the proof of the Proposition.
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The proof of the Theorem is completed.

Remark 3.12: Our original definition of ψ was

ψ(di∂jx) = Di

( ∑

k+l=j

∑

π∈P [k]

(−i)|π|Dπδlx

)

where P [k] is the set of ordered partitions π of k, that is, π = (a1, . . . , an) ∈

(N+)n, with
∑n

p=1 ap = k and Dπ = Da1 ◦ · · · ◦Dan . The length of π is denoted

|π|. This is the formula one finds if one inverts φ ‘by hand’ on examples with

i, j small. Later, we observed that the following lemma yields the definition

that we gave above,

ψ(di∂jx) = Di

( ∑

k+l=j

(−1)kDkδlx

)
.

Definition 3.13: Given k ∈ N+, define a function, ‘multinomial’, µ : P [k]→ N+,

by

µ(a1, . . . , an) =
(

k
a1,...,an

)
:=

k!

a1! · · · an!
.

One can easily check that Dπ = µ(π)Dk.

Lemma 3.14: For all k ∈ N+,
∑

π∈P [k]

(−1)|π|µ(π) = (−1)k.

Proof. By induction on k. It will be helpful to stipulate that P [0] := {∅},

|∅| = 0, and µ(∅) = 1. The case k = 1 is obvious, so assume the lemma holds

up to k − 1.

Given a partition π ∈ P [j], π = (a1, . . . , am), and i ∈ N+, let π ∗ (i) denote

the partition (a1, . . . , am, i) ∈ P [j + i]. Note that µ(π ∗ (i)) =
(
j+i
i

)
µ(π).

∑

π∈P [k]

(−1)|π| =

k∑

i=1

∑

π∈P [k−i]

(−1)|π|+1µ(π ∗ (i)) = −
k∑

i=1

(
k
i

) ∑

π∈P [k−i]

(−1)|π|µ(π)

= −
k∑

i=1

(
k
i

)
(−1)k−i = (−1)k+1

k∑

i=1

(
k
i

)
(−1)i

= (−1)k

Remark 3.15: We now explain the geometric intuition behind the proof of the

preceding proposition. Recall that by the characterizations of jet spaces and
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prolongations via representable functors, we have the following natural bijec-

tions,

HomK(SpecK, Jm(X)) ' HomK(SpecKm, X)

HomK(SpecK,Pm(X)) ' HomK(Spec K̃m, X)

where, for example, HomK(SpecK, Jm(X)) is the set of K-rational points of

Jm(X). By Proposition 1.14, there is an isomorphism Ψ from Km to K̃m so

there is a corresponding isomorphism Ψ′ from Spec K̃m to SpecKm. Thus, Ψ′

induces a natural bijection from HomK(SpecKm, X) to HomK(Spec K̃m, X),

and thus between the K-points of Jm(X) and Pm(X). When one computes

this map in local coordinates, one gets the morphisms from the proof of the

preceding theorem.

We illustrate this for X = A1 = SpecK[x]. First, we reformulate everything

in terms of K-algebras. We have Jm(X) = SpecK[∂0x, . . . , ∂mx] and Pm(X) =

SpecK[δ0x, . . . , δmx] and the following bijections.

HomK(K[∂0x, . . . , ∂mx],K) ' HomK(K[x],Km)

HomK(K[δ0x, . . . , δmx],K) ' HomK(K[x], K̃m)

An m-jet, (a0, . . . , am) ∈ Jm(X), corresponds to the map

f : x 7→ a0 + a1t+ · · ·+ amt
m ∈ HomK(K[x],Km),

which corresponds to the map F ∈ HomK(K[∂0x, . . . , ∂mx],K), where F (∂ix) =

ai. Composing f with the isomorphism Ψ : Km → K̃m, one gets the map

g : x 7→ a0 + (D0a1 +D1a0)t+ · · ·+

( ∑

j+k=m

Djak

)
tm ∈ HomK(K[x], K̃m),

which corresponds to G ∈ HomK(K[δ0x, . . . , δmx],K, where

G(δix) =
∑

j+k=i

Djak.

Thus, the bijection above between K-points of Jm(X) and Pm(X) sends

(a0, . . . , am) ∈ Jm(X) to (a0, D0a1 +D1a0, . . . ,
∑

j+k=mDjak) ∈ Pm(X). This

‘differential map’ from Jm(X) to Pm(X) corresponds to the algebraic morphism

from P∞(Jm(X)) to P∞(Pm(X)) given in the proof of the above theorem by

the map φ.
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4. Multiple derivations

We now develop the theory of prolongations over a differential field with finitely

many commuting derivations. In characteristic p > 0, Okugawa [Oku87] devel-

oped differential algebra over fields with commuting higher derivations. More re-

cently, differential Galois theory for such fields has been investigated by Matzat

and van der Put [MvdP03]. Ziegler [Zie03] has shown that the model comple-

tion of the theory of n commuting Hasse–Schmidt derivations is a definitional

expansion of the theory SCFp,n, the theory of separably closed fields of char-

acteristic p and degree of imperfection n. Kolchin [Kol73] considers differential

fields with commuting derivations, mostly of characteristic 0. Moosa, Pillay,

and Scanlon [MPS07] study the model theory of characteristic 0 differential

fields with n commuting derivations. Since we will consider rings (fields) of

arbitrary characteristic, the results in this section essentially apply to all of the

above contexts.

Of course, it would have been possible to consider multiple derivations from

the beginning. But it is easier to see the theory developed for one derivation

first. The general theory is then quite similar.

Definition 4.1: For n ∈ N+, a ring with n commuting (higher) derivations is

a ring R and a sequence, D1, . . . , Dn, of iterative derivations on R, Di =

(Di,0, Di,1, . . .), for i ≤ n, such that for all i, j, k, l, Di,k ◦Dj,l = Dj,l ◦Di,k.

We also add symbols for ‘mixed’ derivatives. An n-multi-index α is a sequence

(α1, . . . , αn) of non-negative integers. For each n-multi-index α, we add an

operator Dα, such that Dα = D1,α1 ◦ · · · ◦Dn,αn . So Di,j = Dα, where α is the

multi-index with a j in the i-th place, and 0’s everywhere else.

A ring with n commuting derivations will be written (R,D) when there no

chance of confusion. These will also be called D-rings.

Given an n-multi-index α, the size of α, written |α|, is the sum α1 + · · ·+αn.

We will sometimes write α ≤ m for |α| ≤ m. There is also a natural partial

order on n-multi-indices, where α ≤ β if and only if for all i ≤ n, αi ≤ βi. We

also writes 0 for the multi-index that is a sequence of 0’s. Note that D0 = IdR.

Composition of mixed derivatives is completely determined by the iteration

rule for each derivation, and the fact that the derivations commute.
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Lemma 4.2: Let (R,D) be a D-ring, and let Dα, Dβ mixed derivatives, α =

(α1, . . . , αn), β = (β1, . . . , βn).

Dα ◦Dβ =
(
α1+β1

α1

)
· · ·

(
αn+βn

αn

)
Dα+β

One also has the following generalization of the Leibniz Rule.

Proposition 4.3: Let (R,D) be a D-ring. Then for any multi-index α and

any a, b ∈ R,

Dα(ab) =
∑

β+γ=α

Dβ(a)Dγ(b)

Proof.

Dα(ab)

= D1,α1 ◦ · · · ◦Dn,αn(ab)

= D1,α1 ◦ · · · ◦Dn−1,αn−1

( ∑

βn+γn=αn

Dn,βn(a)Dn,γn(b)

)

=
∑

βn+γn=αn

(
D1,α1 ◦ · · · ◦Dn,αn (Dn,βn(a)Dn,γn(b))

)

...

=
∑

β1+γ1=α1

(
. . .

( ∑

βn+γn=αn

(D1,β1 ◦ · · · ◦Dn,βn(a) ·D1,γ1 ◦ · · · ◦Dn,γn(b))
))

=
∑

β+γ=α

Dβ(a)Dγ(b)

Remark 4.4: One sees this rule, for example, when taking Taylor series of holo-

morphic functions of n variables. Given functions f and g, the Leibniz Rule

computes the coefficent of zα in the Taylor series of fg from the coefficients of

the Taylor series of f and of g.

Commuting derivations behave well under localization.

Lemma 4.5: let (R,D) be a D-ring, with n commuting derivations, and S ⊆ R

a multiplicative subset. Then the unique extensions of each of the derivations

on R to S−1R also commute.

Proof. See [Oku87], Section 1.6, Corollary 1.
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Definition 4.6: Let (R,D) be a D-ring. Given (R,D)-algebras f : R → A and

B, a higher derivation of order m from A to B over (R,D) is a set of

maps {Dα : α ≤ m} such that D0 is an R-algebra homomorphism, the Dα are

(additive) abelian group homomorphisms, and

(1) Dα(f(x)) = D0(f(Dα(x)));

(2) (Leibniz Rule) Dα(ab) =
∑

β+γ=αDβ(a)Dγ(b), for all a, b,∈ A,α ≤ m.

Definition 4.7: Let (R,D) be a D-ring, f : R → A an (R,D)-algebra. Define

HSmA/(R,D) to be the A-algebra that is the quotient of the polynomial algebra

A[x(α)]x∈A,06=α≤m by the ideal I generated by:

(1) (x+ y)(α) − x(α) − y(α) : x, y ∈ A, 0 6= α ≤ m;

(2) (xy)(α) −
∑

β+γ=α x
(β)y(γ) : x, y ∈ A, 0 6= α ≤ m;

(3) f(r)(α) − f(Dα(r)) : r ∈ R, 0 6= α ≤ m.

In A[x(α)], we identify x ∈ A with x(0). There is a universal derivation d =

{dα : α ≤ m} : A→ HSmA/(R,D) such that for α ≤ m and x ∈ A, dα(x) = x(α).

Remark 4.8: As before, for m =∞, because (R,D) is an iterative D-ring, there

is a canonical way to make HS∞
A/(R,D) into a D-(R,D)-algebra.

Extend d : A → HS∞
A/(R,D) to an (iterative) higher derivation on HS∞

A/(R,D)

by letting

dα(x(β)) =
(
α1+β1

α1

)
· · ·

(
αn+βn

αn

)
x(α+β).

Definition 4.9: Let (R,D) be a D-ring with n commuting derivations. Let

Rm =

{
R[t1, . . . , tn]/(t1, . . . , tn)

m+1 for m <∞

R[[t1, . . . , tn]] for m =∞

For a multi-index α, write tα as shorthand for tα1
1 · · · t

αn
n . For each m, we define

the twisted homomorphism e : R→ Rm by

e(r) =
∑

α≤m

Dα(r)tα.

Let R̃m be the R-algebra isomorphic to Rm as a ring, and made into an R-

algebra via the map e : R→ Rm.

Likewise, given an (R,D)-algebra f : R→ B, let

Bm = B[t1, . . . , tn]/(t1, . . . , tn)
m+1,
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for m <∞, and B∞ = B[[t1, . . . , tn]]. Define f̃ : R→ Bm by

f̃(r) =
∑

α≤m

f(Dα(r))tα.

and let B̃m be the (R,D)-algebra that is the ring Bm with the map f̃ : R→ Bm.

That e and f̃ are actually homomorphisms follows immediately from the

Leibniz Rule. One also has the following converse, whose proof is immediate.

Lemma 4.10: Let R be a ring and let f : R → Rm be a ring homomorphism,

which we write

f(b) =
∑

α≤m

fα(b)tα.

Suppose that f0 = IdR. Then the maps {fα : α ≤ m} are a higher derivation

on R.

Proposition 4.11: Let (R,D) be a D-ring with n commuting derivations. For

all m, Rm and R̃m are isomorphic as R-algebras.

Proof. The idea of the proof is the same as for Lemma 1.14. We first treat the

case m <∞. Let ψ : Rm → R̃m be the map ψ(r) = e(r) =
∑

α≤mDα(r)tα, for

r ∈ R, and ψ(ti) = ti, for i ≤ m. This is clearly a homomorphism, so it remains

to check that ψ is injective and surjective.

Linearly order the n-multi-indices of size ≤ m, α1, . . . , αk such that, for all

i, j ≤ k, |αi| < |αj | implies i < j. Let b ∈ Rm be b =
∑

α≤m bαt
α, and suppose

that ψ(b) = 0. We will show b = 0 by showing that each bαi = 0, by induction

on i.

ψ(b) = ψ

( ∑

α≤m

bαt
α

)
=

∑

α≤m

ψ(bα)tα =
∑

α≤m

( ∑

β+γ=α

Dβ(bγ)t
α

)

By assumption, each coefficient
∑

β+γ=αDβ(bβ) of tα is 0. For the base case,

α1 = 0, the constant term, that is, the coefficient of t0, is 0 = D0(b0) = b0.

By induction, suppose that for all j ≤ i, bαj = 0. The tαi+1 coefficient of

ψ(b) is 0 =
∑

β+γ=αi+1
Dβ(bγ) = D0(bαi+1) = bαi+1 , because for β + γ = αi+1,

if β 6= 0, then |γ| < αi+1, so bγ = 0, by the induction hypothesis.

To show that ψ is surjective, it suffices to show that for each r ∈ R, r ∈ R̃m is

in Im(ψ). For fixed r, we iteratively define a sequence, c0, c1, . . . , ck, of elements

of Rm with the following properties. One, for all i ≤ k, the constant term of

ψ(ci), as a polynomial in the ti, is r. Two, for i ≥ 1, and 1 ≤ j ≤ i, the
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coefficient of tαj in ψ(ci) is 0. Then ψ(cm) = r, as desired. Set c0 = r. For

the iterative step, suppose that c0, . . . , ci have been defined, and that ψ(ci) =

r +
∑

i+l≤j≤k aαj t
αj . Let ci+1 = ci − aαi+1t

αi+1 . Clearly, this procedure yields

such a sequence.

For m = ∞, given the isomorphisms ψi : Ri → R̃i, i < ∞, it suffices to

note again that R∞ and R̃∞ are the inverse limits of {Ri}i<∞ and {R̃i}i<∞,

respectively. The required isomorphism ψ∞ : R∞ → R̃∞ also sends r ∈ R to

e(r), and sends each ti to ti.

The next two results are proved in the same way as Proposition 1.18 and

Lemma 1.19, respectively.

Proposition 4.12: Let (R,D) be a D-ring, and R → A and R → B be

(R,D)-algebras. Given a higher derivation δ ∈ Derm(R,D)(A,B), there exists a

unique (R,D)-algebra homomorphism, φ : HSmA/(R,D) → B such that for all

α ≤ m, δα = φ ◦ dα. Thus HSmA/(R,D) (together with the universal derivation

d : A→ HSmA/(R,D)) represents the functor Derm(R,D)(A,−).

Lemma 4.13: Let (R,D), R → A,R → B, and m be as above. Given δ ∈

Derm(R,D)(A,B), define a map φ = φδ : A → B̃m by φ(a) =
∑
α≤m δα(a)tα.

Then φ ∈ HomR(A, B̃m) and the map

δ 7→ φδ : Derm(R,D)(A,B) −→ HomR(A, B̃m)

is a bijection.

The next corollary is the key result in characterizing prolongations in terms

of representable functors, as in Buium.

Corollary 4.14: There is a natural bijection

HomR(HSmA/(R,D), B) −→ HomR(A, B̃m).

Proof. Immediate from Proposition 4.12 and Lemma 4.13.

The following results are proved as in the case of a single derivation.

Proposition 4.15: Let (R,D) be a D-ring, AlgR be the category of (R,D)-

algebras, and D-AlgR be the category of D-(R,D)-algebras. Let U be the

forgetful functor D-AlgR → AlgR. Then the functor F : AlgR → D-AlgR,

sending A to HS∞
A/(R,D), is the left adjoint of U .
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Proposition 4.16 (Second fundamental exact sequence): Let (R,D) be a D-

ring and R→ A→ B a sequence of ring homomorphisms. Assume that A→ B

is surjective, and let I be its kernel. Let J be the ideal in HSmA/(R,D) generated

by {dαx : α ≤ m,x ∈ I}. Then the following sequence is exact.

0 −→ J −→ HSmA/(R,D) −→ HSmB/(R,D) −→ 0

In the definition of J , it suffices to let x vary over a set of generators of I.

Proposition 4.17: Let (R,D) be a D-ring, andA = R[xi]i∈I . Then HSmA/(R,D)

is the polynomial algebra A[dαxi]i∈I,1≤α≤m.

Remark 4.18: For m,n ≥ 1, define cn,m to be the number of n-multi-indices of

size ≤ m. Equivalently, cn,m is the number of monomials in n variables of order

≤ m or the number of mixed partial derivatives in n variables of total order

≤ m.

By the previous proposition, given a polynomial ring A = R[x1, . . . , xq] over

a ring R with n commuting derivations, then HSmA/(R,D) is a polynomial ring in

q · cn,m indeterminates.

Corollary 4.19: Let A be an (R,D)-algebra, A ∼= R[xi]i∈I/(fj)j∈J . Then

HSmA/(R,D)
∼= A[dαxi]i∈I,1≤α≤m/(dαfj)j∈J,1≤α≤m.

4.1. Prolongations. In this section, we generalize the results of Section 2

to fields with many derivations. Almost everything goes through as before.

Assume throughout that (K,D) is a D-field with n commuting derivations.

Lemma 4.20: Let A be a (K,D)-algebra and S a multiplicative subset of A.

There is an isomorphism

HSmA/(K,D) ⊗A S
−1A −→ HSmS−1A/(K,D).

Theorem 4.21: Let X be a K-scheme. For all m, there exists a sheaf of OX -

algebras HSmX/(K,D) such that (i) for each open affine SpecA ⊆ X , there is an

isomorphism

φA : Γ(SpecA,HSmX/(K,D)) −→ HSmA/(K,D)

of (K,D)-algebras, and (ii) the various φA are compatible with the localization

isomorphism of Lemma 4.20. Moreover, the collection ((HSmX/(K,D)), (φA)A) is

unique.
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Definition 4.22: Let X be a K-scheme. For all m, the m-th prolongation of

X is the scheme

Pm(X/(K,D)) := SpecHSmX/(K,D).

Suppose that A is a (K,D)-algebra. We write

Pm(A/(K,D)) = Pm(SpecA/(K,D)),

which equals SpecHSmA/(K,D).

We will also write Xm or Pm(X) for Pm(X/(K,D)).

Recall that for m <∞, Km=K[t1, . . . , tn]/(t1, . . . , t
m+1), K∞=K[[t1, . . . , tn]],

and that e : K → Km denotes the twisted homomorphism. We also let

e : SpecKm → SpecK denote the corresponding twisted morphism of schemes.

Given a K-scheme Y , let (Y ×K SpecKm)̃ denote the scheme (Y ×K SpecKm)

made into a K-scheme via the map e ◦ p : (Y ×K SpecKm) → SpecK, where

p : (Y ×K SpecKm)→ SpecKm is the canonical projection.

Theorem 4.23: LetX be aK-scheme. For allm, the scheme Pm(X) represents

the functor from K-schemes to sets given by

Y 7→ HomK((Y ×K SpecKm)̃, X).

Theorem 4.24 (Moosa, Pillay, and Scanlon): Let X be a K-scheme. For all

m, q ≤ ∞,

Jm(Pq(X)) ∼= Pq(Jm(X)).

Proof. Both proofs of Theorem 2.6 generalize easily. Here we only show how

to adapt the second proof. Exactly as before, it suffices to show that for any

K-algebra B, the following are isomorphic.

((B ⊗K Kq )̃⊗K Km) ∼= ((B ⊗K Km)⊗K Kq )̃

where Km = K[t1, . . . tn]/(t1, . . . , tn)
m+1, Kq = K[u1, . . . , un]/(u1, . . . , un)

q+1,

and we use e for the twisted map from K to Kq.

We claim any non-zero element of ((B⊗KKq )̃⊗KKm) can be written uniquely

as a sum ∑

α≤m,β≤q

(bα,β ⊗ u
β ⊗ tα).
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Again, it suffices to prove this for elements of the form (b⊗ a1u
β ⊗ a2t

α). And

(b ⊗ a1u
β ⊗ a2t

α) = (b⊗ e(a2)a1u
β ⊗ tα) =

∑

γ≤q

(b⊗Dγ(a2)a1u
β+γ ⊗ tα)

=
∑

γ≤q

(Dγ(a2)a1b⊗ u
β+γ ⊗ tα)

as desired. Secondly, observe that this also holds in ((B ⊗K Km) ⊗K Kq), as

(b ⊗ a1t
α ⊗ a2u

β) ∈ ((B ⊗K Km)⊗K Kq) equals (a1a2b⊗ tα ⊗ uβ).

Define

θ : ((B ⊗K Kq )̃⊗K Km) −→ ((B ⊗K Km)⊗K Kq )̃

by θ(b ⊗ uβ ⊗ tα) = (b ⊗ tα ⊗ uβ). It suffices to show that θ is K-linear and

surjective. Let c ∈ K, (b⊗ uβ ⊗ tα) ∈ ((B ⊗K Kq )̃⊗K Km). Then

c · (b⊗ uβ ⊗ tα) =
∑

γ≤q

(Dγ(c)b ⊗ u
β+γ ⊗ tα),

and

θ

( ∑

γ≤q

(Dγ(c)b⊗ uβ+γ ⊗ tα)

)
=

∑

γ≤q

(Dγ(c)b ⊗ t
α ⊗ uβ+γ)

=
∑

γ≤q

(b⊗ tα ⊗Dγ(c)u
β+γ)

= (b⊗ tα ⊗ e(c)uβ)

= c · (b⊗ tα ⊗ uβ).

This proves K-linearity.

To prove that θ is surjective, it will suffice to show that for all c ∈ K, that

(1⊗ 1⊗ c) ∈ ((B ⊗K Km)⊗K Kq )̃ is in the image of θ. The rest follows easily.

By Proposition 4.11, we can write c as c =
∑

γ≤q e(cγ)u
γ , so we get that

(1⊗ 1⊗ c) =

(
1⊗ 1⊗

∑

γ≤q

e(cγ)u
γ

)
=

∑

γ≤q

(
e(cγ)⊗ 1⊗ uγ

)
.

Thus

θ

( ∑

γ≤q

(e(cγ)⊗ u
γ ⊗ 1)

)
= (1 ⊗ 1⊗ c).

Remark 4.25: Let X be a K-scheme. As in Remark 2.8, for 0 ≤ m ≤ n ≤ ∞,

the canonical maps fmn : HSmA/(K,D) → HSnA/(K,D) determine a directed system
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of morphisms

fmn : HSmX/(K,D) −→ HSnX/(K,D).

In terms of schemes, the fmn give morphisms

πnm : Pn(X/(K,D)) −→ Pm(X/(K,D))

which also form a directed system. Exactly as above, we also have

HS∞
X/(K,D) = lim

−→

i∈N

HSiX/(K,D)

and

P∞(X/(K,D)) = lim
←−

i∈N

Pi(X/(K,D)).

Functorial properties. There are many functorial properties of these con-

structions, precisely as discussed on page 257.

Lemma 4.26: Let A be a (K,D)-algebra, (K ′, D) a D-extension field of K, and

A′ = A⊗K K ′. Then HSmA′/(K′,D)
∼= HSmA/(K,D) ⊗K K ′ as A′-algebras.

Proof. Let φ be the map from HSmA′/(K′,D) to HSmA/(K,D) ⊗K K ′ that sends

dα(a⊗ c), α ≤ m, a ∈ A, c ∈ K, to
∑
β+γ=k(dβa⊗ 1)(1⊗Dγc)). It is clear that

φ is an isomorphism.

Corollary 4.27: Let (K,D) be a D-field, and let (K ′, D) be a D-field exten-

sion. Then for all K-schemes X and all m,

Pm(X ×K SpecK ′) ∼= Pm(X)×K SpecK ′.

As above, if f : X → X ′ is a morphism ofK-schemes, then there is an induced

map Pm(f) : Pm(X)→ Pm(X ′) between their prolongations.

Lemma 4.28: Let X,X ′ be K-schemes, and f : X → X ′ a closed immersion.

Then Pm(f) : Pm(X)→ Pm(X ′) is also a closed immersion.

Proposition 4.29: Let f : X → Y be an étale morphism of schemes over a

D-field (K,D). Then for all m,

Pm(X) ∼= X ×Y Pm(Y ).

Remark 4.30: Notice by Remark 4.18 that for any q and anym<∞, dim(Pm(Aq))

= q · cn,m.
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Proposition 4.31: Let X be a smooth scheme over the D-field (K,D) of

dimension q. Then for all m, Pm(X) is an Aq·cn,m-bundle over X . (That is, X

can be covered by open sets U such that Pm(U) ∼= U ×K Aq·cn,m .

Proof. By hypothesis, X → SpecK is a smooth map, so, by [EGA], this implies

that there is a covering of X by open sets Ui, such that for all i, the following

diagram commutes

Ui

��

gi // An

��
K

= // K

and gi is étale. By the previous proposition, Pm(Ui) ∼= Ui × Aq·cn,m , as

desired.

Corollary 4.32: Let X be a smooth scheme over the D-field (K,D) of di-

mension q. Then for all m, Pm+1(X) is an Aq(cn,m−cn,m−1)-bundle over Pm(X).

4.2. D-Schemes. We generalize material from Section 3, which is straightfor-

ward.

Definition 4.33: Let (K,D) be a D-field. A D-scheme over (K,D) is a K-

schemeX such that OX is a structure sheaf of D-(K,D)-algebras. A morphism

of D-schemes is a morphism of R-schemes such that the map OY → f∗OX is a

map of sheaves of (R,D)-algebras.

Proposition 4.34: Let (A,D) be a D-(K,D)-algebra. There exists a D-

scheme X = D-Spec(A,D) such that, forgetting the D-structure on X , X is

isomorphic to SpecA.

Proposition 4.35: Let (A,D) be a D-ring, and (X,OX) a D-scheme. Then

there is a bijection:

χ : HomD−Sch(X, SpecA) −→ HomD−Ring(A,Γ(X,OX)).

Remark 4.36: Let X ⊆ Aq be an affine K-scheme,

Γ(X,OX) = K[xi]i=1,...,q/(fj)j∈J .

For all m ≤ ∞, Pm(X) is the closed subscheme of

Aq·cn,m = Spec(K[Dαxi]i=1,...,q,α≤m)
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with

Γ(Pm(X),OPm(X)) = K[Dαxi]i=1,...,q,α≤m/(Dαfj)j∈J,α≤m.

(This follows from Proposition 4.19.) In particular, for every closed point

(a1, . . . , aq) ∈ X , the point (Dαai)i=1,...,q,α≤m is in Pm(X). The canonical

projection from Pm(X) to X maps a closed point (ai,α)i=1,...,q,α≤m to its first

q coordinates, (ai,0)i=1,...,q.

Proposition 4.37: Let (K,D) be a D-field. The prolongation functor, that

takes aK-schemeX to the D-scheme P∞(X), is the right adjoint to the forgetful

functor Y 7→ Y ! from D-schemes to K-schemes.

As before, if X is a D-scheme, we define a K-rational point of X to be

a D-scheme homomorphism from D-SpecK to X . Of course, a D-morphism

f : X → Y naturally induces a map between their K-rational points. The pre-

vious proposition immediately implies that there is a natural bijection between

K-rational points of X and of P∞(X).

Definition 4.38: Let X,Y be K-schemes, and f : P∞(X) → P∞(Y ) be a D-

morphism. The natural bijections

χ : HomK(SpecK,X) −→ Hom(K,D)(D-SpecK,P∞(X))

and

ζ : HomK(SpecK,Y ) −→ Hom(K,D)(D-SpecK,P∞(Y ))

and the induced map

f̂ : Hom(K,D)(D-SpecK,P∞(X)) −→ Hom(K,D)(D-SpecK,P∞(Y ))

determine a (set theoretic) map from K-rational points of X to those of Y ,

given by ζ−1 ◦ f̂ ◦ χ.

A D-polynomial map from X to Y is a map on K-rational points of the

form ζ−1 ◦ f̂ ◦ χ, for some D-morphism f : P∞(X)→ P∞(Y ).

SchemesX and Y are D-polynomially isomorphic if there are D-polynomi-

al maps f : X → Y and g : Y → X such that g ◦ f = IdX and f ◦ g = IdY .

Remark 4.39: Let X = Spec(K[xi]i≤q/(fj)j∈J ), so that

P∞(X) = Spec(K[dαxi]i≤q,α<∞/(fj)j∈J ).
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The bijection χ takes h ∈ HomK(SpecK,X), which is determined by (bi)i≤q =

h(xi)i≤q to H ∈ Hom(K,D)(SpecK,P∞(X)) determined by (Dαbi)i≤q,α<∞ =

H(dαxi)i≤q,α<∞.

Proposition 4.40: Let X be a K-scheme, and m < ∞. There exists a D-

polynomial map ∇m : X → Pm(X) that is a section of the canonical projection

pm : Pm(X)→ X .

Let f : X → Y be a morphism of K-schemes. Considering f and Pm(f) as

maps on K-rational points, the following diagram commutes.

Pm(X)
Pm(f)

// Pm(Y )

X

∇m

OO

f // Y

∇m

OO

Proof. (Again, the proof is similar to the corresponding result for fields with

a single derivation.) By the adjointness of P∞(−) and (−)!, there is a natural

bijection

HomK((P∞(X))!, Pm(X)) ' Hom(K,D)(P∞(X), P∞(Pm(X))).

Let f : P∞(X)→ P∞(Pm(X)) be the D-morphism corresponding to the canon-

ical projection from (P∞(X))! to Pm(X), and let ∇m be the D-polynomial map

corresponding to f . We show that ∇m has the desired properties.

It suffices to check locally, so suppose thatX is given as Spec(K[xi]i≤q/(fj)j∈J).

By Remark 4.36,

Pm(X) = Spec(K[dαxi]α≤m,i≤q/(dαfj)α≤m,j∈J )

P∞(X) = Spec(K[dαxi]α<∞,i≤q/(dαfj)α<∞,j∈J )

P∞(Pm(X)) = Spec(K[dβdαxi]α≤m,β<∞,i≤q/(gh)h∈H)

where (gh)h∈H is the ideal generated by (dβdαfj)j∈J,α≤m,l<∞. The D-morphism

from P∞(X) to P∞(Pm(X)), corresponding to the projection morphism from

P∞(X) to Pm(X) is determined by the D-algebra homomorphism

K[dβdαxi]α≤m,β<∞,i≤q/(gh)h∈H −→ K[dαxi]α<∞,i≤q/(dαfj)α<∞,j∈J

such that

dβdαxi 7→
(
α1+β1

α1

)
· · ·

(
αn+βn

αn

)
dα+βxi.
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One can then see that this determines the D-polynomial map from X to Pm(X)

that takes the closed point (ai)i≤n to (Dαai)α≤m,i≤n. By Remark 4.36, this is

a section of πm.

Next we argue that Pm(f) ◦ ∇X = ∇Y ◦ f . It suffices to prove this for

affine schemes, so assume that X = SpecK[x]/I and Y = SpecK[y]/J . Let

S = K[x]/I and R = K[y]/J , and let f also denote the homomorphism from

R to S corresponding to f : X → Y . A K-rational point of X corresponds to

a homomorphism g from S to K, which is determined by the image of x, so we

think of aK-rational point as a tuple a = g(x) of elements ofK. Also, Pm(X) =

Spec HSmS/(K,D) is affine, and HSmS/(K,D) is generated by (dαx)x∈x,α≤m. We have

seen that ∇X(a) = (a,D1(a), . . . , Dm(a)). To be more precise, ∇X(a) is the

K-rational point of Pm(X) that corresponds to the map that sends dαx ∈

HSmS/(K,D) to Dα(g(x)) ∈ K, for each x ∈ x, α ≤ m.

Let f(a) = b ∈ Y , b = (g ◦ f(y))y∈y. Again, ∇Y (b) = (b,D1(b), . . . , Dm(b)).

As a map of K-algebras, Pm(f) is the map that sends dαy to dαf(y), for

y ∈ y, α ≤ m. Thus,

Pm(f)(a,D1(a), . . . , Dm(a)) = (b,D1(b), . . . , Dm(b))

as desired.
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